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1 IntroductionIn this paper we introduce tensor methods for large, sparse nonlinear least squares problems.The nonlinear least squares problem isminimizex2<n kF (x) k2; F (x) : <n ! <m; m � n; (1:1)where it is assumed that F (x) is at least once continuously di�erentiable and F 0(x) is sparse.Large sparse nonlinear least squares arise especially in data-�tting problems. Often, F 0(x�) is illconditioned or singular with a small rank de�ciency. For example, this occurs if two parametersin the model that is being �t are closely correlated. Large, sparse nonlinear least squaresmethods usually are solved by sparse variants of the Gauss-Newton method. Tensor methodsare especially intended to improve the e�ciency of standard algorithms based on the Gauss-Newton method when F 0(x�) is singular or ill conditioned. Tensor methods are also intended tobe at least as e�cient as standard methods on problems where F 0(x�) is nonsingular and wellconditioned, and in practice they often prove to be considerably more e�cient on these problemsas well.The tensor model came initially from the research of [23] for nonlinear equations and wasextended to nonlinear least squares in [8]. For both nonlinear equations and nonlinear leastsquares, the tensor model is a quadratic model of F (x) that has the formM(xc + d) = F (xc) + F 0(xc)d+ 12Tcdd; (1:2)where xc is the current iterate, F 0(xc) 2 <m�n is the Jacobian matrix at xc, and Tc 2 <m�n�nis the tensor term at xc. The notation Tcdd is de�ned as follows.De�nition 1.1. Let T 2 <n�n�n . Then T is composed of n horizontal faces Hi 2 <n�n; i =1; : : : ; n, where Hi[j; k] = T [i; j; k]. For v; w 2 <n; Tvw 2 <n withTvw[i] = vTHiw = nXj=1 nXk=1T [i; j; k]v[j]w[k]:The tensor term is selected so that the model interpolates a very small number, p, of functionvalues from previous iterations. Hence, Tc is a very low rank tensor, which is crucial to thee�ciency of the tensor method. Methods for forming the tensor term and solving the tensormodel for dense nonlinear least squares problems are reviewed in more detail in the next section.Methods based on (1.2) have been shown to be e�cient in terms of algorithmic overheadand to exhibit fast local convergence as well. In the test results obtained for both nonsingularand singular dense nonlinear least squares problems, the improvement of the tensor methodover the standard Gauss-Newton method is substantial, averaging about 52% in iterations and53% in function evaluations when the line search is used, and about 35% in iterations and 28%in function evaluations when the trust region is used, on problems solved by both methods.Furthermore, the tensor method solves several problems that the Gauss-Newton method doesnot, and the reverse is never the case.In order to extend tensor methods to large, sparse nonlinear least squares problems, severalkey issues need to be considered. First, tensor methods require that the Jacobian matrix be2



available at each iteration. It turns out that this requirement is not a problem in the large,sparse case because derivatives usually are computed by using e�cient sparse �nite di�erences(see [10, 11, 12, 13]) or automatic di�erentiation (see, e.g., [3]). Second, the method for formingthe tensor model must be modi�ed to adapt to the large, sparse case. Again, the solution issimple: we need only to change the upper bound on the number of recent past points from pnto a much smaller number, say 1 or 2. This process eliminates virtually all of the cost of themodi�ed Gram-Schmidt procedure for selecting the past points that is used in the dense case (seeSection 2). In addition, since the number of past points selected for the interpolation process isalmost always equal to 1 or 2 in practice, the performance of the tensor method probably willnot be a�ected by this modi�cation. The �nal question is how to use the sparsity of the Jacobianmatrix e�ciently in computing the tensor step. The tensor algorithms that have been designedfor dense problems are QR-based algorithms involving orthogonal transformations of both thevariable and function space. QR-based algorithms are very e�ective for solving the tensor modelwhen the Jacobian is dense, because they are e�cient and very stable numerically, especiallywhen the tensor model has no real root or when the Jacobian is singular or ill conditioned.However, QR-based algorithms are not e�cient for sparse problems because they destroy thesparsity of the Jacobian as a result of the orthogonal transformation of the variable space.In this paper we address this last problem by developing an entirely new way of solving thetensor model that is e�cient for sparse problems. We consider a number of interesting linearalgebraic implementation issues. We also show how to solve the tensor model e�ciently whenthe Jacobian is singular and how to compute the Gauss-Newton step, which is used in the tensoralgorithm, as a by-product of the tensor step calculation. We then give test results of the tensormethod applied to a set of large, sparse nonlinear least squares problems. These results indicatethat the tensor method is signi�cantly more robust and e�cient than the Gauss-Newton method,in terms of iterations, function evaluations, and execution time.The remainder of this paper is organized as follows. In Section 2 we brie
y review tensormethods for dense nonlinear least squares problems. In Section 3 we describe e�cient algorithmsfor solving the tensor model in the cases when the Jacobian matrix has full rank and when itis rank de�cient. Then, in Section 4, we discuss the large, sparse linear least squares problemsthat arise from tensor algorithms, and we present our approach for solving these least squaresproblems. In Section 5 we describe an e�cient method to compute the Gauss-Newton step as aby-product of the solution of the tensor model. In Section 6 we give an overall implementationof the tensor method for sparse, nonlinear least squares problems; present summary statisticsof the test results; and provide a detailed analysis of these results. Finally, in Section 7, wesummarize our work and discuss future research.2 Overview of Tensor Methods for Dense Nonlinear Least SquaresTensor methods are general-purpose methods intended especially for problems where the Ja-cobian matrix at the solution is singular or ill conditioned. The idea is to base each iterationupon a model that has more information than the standard linear model but is not appreciablymore expensive to form, store, or solve. Each iteration is based upon a quadratic model (1.2)of the nonlinear function F (x). The particular choice of the tensor term Tc 2 <m�n�n causes3



the second-order term Tcdd in (1.2) to have a simple and useful form.In tensor methods, the tensor term Tc is chosen to allow the model M(xc+ d) to interpolatevalues of the function F (x) at p past iterates x�k . That is, the model should satisfyF (x�k) = F (xc) + F 0(xc)sk + 12Tcsksk; k = 1; : : : ; p; (2:1)where sk = x�k � xc; k = 1; : : : ; p:For dense problems, the past points x�1; : : : ; x�p are selected so that the set of directions fskgfrom xc to the selected points is strongly linearly independent; each direction sk is requiredto make an angle of at least 45 degrees with the subspace spanned by the previously selectedpast directions. The procedure of �nding linearly independent directions is implemented easilyby using a modi�ed Gram-Schmidt algorithm, and usually results in p = 1 or 2. After thelinearly independent past directions sk are selected, the tensor term is chosen by the procedureof Schnabel and Frank [23], which generalizes in a straightforward way to nonlinear least squares.Tc is chosen to be the smallest matrix that satis�es the interpolation conditions (2.1), that is,minimizeTc2<m�n�n kTc kF (2:2)subject to Tcsksk = 2(F (x�k)� F (xc)� F 0(xc)sk);where kTc kF , the Frobenius norm of Tc, is de�ned bykTc k2F = mXi=1 nXj=1 nXk=1(Tc[i; j; k])2:The solution to (2.2) is the sum of p rank-one tensors whose horizontal faces are symmetric:Tc = pXk=1 aksksk; (2:3)where ak is the k-th column of A 2 <m�p, A is de�ned by A = ZM�1, Z is an (m� p) matrixwhose columns are Zj = 2(F (x�j) � F (xc) � F 0(xc)sj), and M is a (p � p) matrix de�ned byMij = (siT sj)2, 1 � i; j � p.If we use the tensor term (2.3), the tensor model (1.2) becomesM(xc + d) = F (xc) + F 0(xc)d+ 12 pXk=1 akfdTskg2: (2:4)The simple form of the quadratic term in (2.4) is the key to being able to e�ciently form,store, and solve the tensor model. The cost of forming the tensor term in the tensor model isO(mnp) � O(mn1:5) arithmetic operations, since p � pn, which for dense problems is smallin comparison with the O(mn2) cost per iteration of Gauss-Newton methods. The additionalstorage required is 4p m-vectors, which is small in comparison with the storage for the Jacobian.4



After the tensor model (2.4) is formed, the least squares solution of the model,minimized2<n kM(xc + d) k2; (2:5)is computed. In [8], we showed that the solution to (2.5) can be reduced to the solution of asmall number (m� n + q) quadratic equations in p unknowns, plus the solution of n � q linearequations in n � p unknowns. Here q is equal to p whenever F 0(xc) is nonsingular and usuallywhen rank(F 0(xc)) � n� p; otherwise, q is greater than p. Thus the system of linear equationsis square or underdetermined, and the system of quadratic equations is equally determined oroverdetermined. The main steps of the algorithm are the following:1. An orthogonal transformation of the variable space is used to cause the m equations in nunknowns to be linear in n� p variables d̂1 2 <n�p, and quadratic only in the remainingp variables d̂2 2 <p.2. An orthogonal transformation of the equations is used to eliminate the n� p transformedlinear variables from n� q of the equations. The result is a system of m�n+ q quadraticequations in the p unknowns, d̂2, plus a system of n� q equations in all the variables thatis linear in the n� p unknowns d̂1.3. A nonlinear unconstrained optimization software package, UNCMIN [24], is used to min-imize the l2 norm of the m � n + q quadratic equations in the p unknowns d̂2. (If p = 1,this procedure is done analytically instead.)4. The system of n � q linear equations that is linear in the remaining n � p unknowns issolved for d̂1.The arithmetic cost per iteration of the above process is the standard O(mn2) cost of a QRfactorization of an m � n matrix, plus an additional O(mnp) � O(mn1:5) operations, plus thecost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN is expectedto be O(p4) � O(n2) operations, since each iteration requires O(p3) (O(p2q) when q > p)operations and a small multiple of p iterations generally su�ces. Thus, the total cost of theabove algorithm is the O(mn2) cost of the standard method plus at most an additional cost ofO(mn1:5) arithmetic operations. Note that when p = 1 and q � 1, the one-variable minimizationproblem is solved very inexpensively in closed form; this turns out to be the most common casein practice.The Gauss-Newton step is computed inexpensively (in O(mnp) operations) as a by-productof the tensor step solution. Using the tensor step and the Gauss-Newton step, a line search or atwo-dimensional trust region global strategy determines the next iterate. The overall algorithmis summarized below.Algorithm 2.1 An Iteration of the Tensor MethodGiven m, n, xc, F (xc)Step 0 Calculate F 0(xc), and decide whether to stop.5



Step 1 Select the past points to use in the tensor model from among the pn most recent points.Step 2 Calculate the second-order term of the tensor model, Tc, so that the tensor modelinterpolates F (x) at all the points selected in Step 1.Step 3 Find a minimizer (in the l2 norm) of the tensor model.Step 4 Compute the Gauss-Newton step as a by-product of the tensor model solution.Step 5 Compute the next iterate x+ using a line search or trust region global strategy basedon the tensor or Gauss-Newton step.Step 6 Set xc  x+, F (xc) F (x+), go to Step 0.At each iteration, the tensor method bases its step upon either the tensor step or the Gauss-Newton step. The Gauss-Newton step is chosen whenever the tensor step is not a descentdirection, or the tensor step is a minimizer of the tensor model and does not provide enoughdecrease in the tensor model, or the quadratic system of m � n + q equations in p unknownscannot be solved by UNCMIN within the iteration limit. Otherwise the tensor step is chosen.For further details, see [8].3 Solving the Tensor Model for Sparse Nonlinear Least SquaresThe major challenge in constructing an e�cient tensor method for sparse nonlinear least squaresproblems is �nding a way to obtain the root or minimizer of the tensor model that preserves ande�ectively uses the sparsity of the Jacobian matrix. This section presents such a method thatworks both when the Jacobian is nonsingular and when it is rank-de�cient. The basic approachis related to the approach given in [7] for solving the tensor model for sparse nonlinear equations,but the situation for nonlinear least squares is considerably di�erent and more complex, as arethe linear algebraic issues (considered in the following sections). For simplicity, we use thematrix notation AfSTdg2 to denote the quadratic term Ppk=1 akfdTskg2 of the tensor model,where A 2 <m�p, with ak being the k-th column of A, S 2 <n�p, with sk being the k-th columnof S, and (fSTdg2)i = (sTi d)2.3.1 Solving the Tensor Model When the Jacobian Has Full RankIn this section we show how to reduce the solution of the tensor model problem (2.5) to a sparsematrix factorization, a very small number of backsolves using this factorization, and a very smallunconstrained optimization problem. Let J = F 0(xc), and J+ 2 <n�m be the pseudo-inversematrix of J (i.e., J+ = (JTJ)�1JT ). Let Q be an orthogonal matrix that has the structureQ = 264 UTNTZT 375 ;where U 2 <m�p; U = J+TS(ST(JTJ)�1S)� 12 ; N 2 <m�(m�n) is an orthonormal basis for thenull space of J ; and Z 2 <m�(n�p) is an orthonormal basis for the subspace orthogonal to the6



subspace spanned by the columns of J+TS and N . Note that ZTJ+TS = ZTN = 0. Nowconsider the equivalent minimization problem to (2.5),minimized2<n kQM(xc + d) k2: (3:1)If we de�ne W = (ST(JTJ)�1S); � = STd, andq(�) = STJ+F + � + 12STJ+A�2; (3:2)where �2 denotes the vector in <p whose i-th component is (�i)2, thenQM(xc + d) = 264 W� 12 q(�)NTF + 12NTA�2ZTM(xc + d) 375 : (3:3)The following lemma is the key to showing that (3.1) can be solved e�ciently through (3.3).Lemma 3.1. For any � 2 <p, there exists a d 2 <n such that ZTM(xc + d) = 0 and STd = �.Proof. Let d = (JTJ)�1SW�1� + J+Zt; (3:4)where t is arbitrary vector 2 <n�p. ThenSTd = ST (JTJ)�1SW�1� + STJ+Zt = �;and ZTM(xc + d) = ZTF + ZTJ [(JTJ)�1SW�1� + J+Zt] + 12ZTA�2= ZTF + ZTJ+TSW�1� + ZTJJ+Zt + 12ZTA�2: (3:5)From the de�nitions of N and J+ NNT + JJ+ = I ,and hence JJ+ = I �NNT .Now if we substitute the above expression for JJ+ into the expression ZTJJ+Z, we getZTJJ+Z = ZT (I �NNT)Z = ZTZ = I:Finally, since ZTJ+TS = 0, and ZTJJ+Z = I , equation (3.5) simpli�es toZTM(xc + d) = ZTF + t+ 12ZTA�2: (3:6)Thus the choice t = �ZT (F + 12A�2) (3:7)7



in (3.4) yields a value of d for which ZTM(xc + d) = 0 and STd = �. 2Since for any �, we are able to �nd a step d such that ZTM(xc + d) = 0 and STd = �,Lemma 3.1 and (3.3) show that problem (3.1) can be reduced to the following minimizationproblem in p variables: minimize�2<p k " W� 12 q(�)n(�) # k22; (3:8)where n(�) = NTF + 12NTA�2. Furthermore, once the value of � that solves problem (3.8) isdetermined, we can obtain the solution d to (3.1) as follows. Substituting (3.7) into (3.4) yieldsd = (JTJ)�1SW�1� � J+ZZT (F + 12A�2): (3:9)Since Q is orthogonal, we have ZZT +NNT + UUT = I ,and hence ZZT = I �NNT � UUT = I �NNT � J+TSW�1STJ+.The substitution of the above expression for ZZT into equation (3.9) yieldsd = (JTJ)�1SW�1� � J+(I �NNT � J+TSW�1STJ+)(F + 12A�2)= (JTJ)�1SW�1� � J+(F + 12A�2) + J+NNT(F + 12A�2)+ J+J+TSW�1STJ+(F + 12A�2): (3:10)Since JTN = 0, J+J+T = (JTJ)�1, and q(�) = STJ+F + � + 12STJ+A�2, equation (3.10)simpli�es to d = (JTJ)�1SW�1q(�)� J+(F + 12A�2): (3:11)Thus, once we know �, we simply calculate the value of q(�) and substitute these two valuesinto equation (3.11) to obtain the value of d.Now we discuss how to determine the value of � that minimizes (3.8). First, we need tocalculate n(�), and in particular NTF and NTA. Since the minimization problem (3.8) isequivalent to minimize�2<p fkW� 12 q(�) k22 + kn(�) k22g; (3:12)where kn(�) k22 = FTNNTF + FTNNTA�2 + 14�2ATNNTA�2;we actually need to compute only NNTF and NNTA. But NNTF is the projection of F intothe orthogonal complement of the subspace spanned by the columns of J and therefore is theresidual of the least squares problem Jx = F . Similarly, NNTA are the projections of thecolumns aj of the matrix A into the orthogonal complement of the subspace spanned by the8



columns of J and hence are the residuals of the least squares problems Jxj = aj ; j = 1; : : : ; p.Hence, these quantities are available from the computation of J+F and J+A, byNNTF = F � JJ+F;and NNTA = A� JJ+A;respectively. Thus, if we let R1 be the residual vector of the least squares problem Jx = Fand let R2 be the matrix whose columns are the residuals of the least squares problems Jxj =aj ; j = 1; : : : ; p, thenkn(�) k22 = FTR1 +R1TA�2 + 14�2ATR2�2 = kR1 + 12�2R2 k22: (3:13)Now we can give an e�cient algorithm that solves problem 3.1. (An alternative algorithm wasconsidered in [6] but proved to be less e�cient.)Algorithm 3.1 Minimization of the Tensor Model When the Jacobian Has Full RankLet J 2 <m�n be sparse, F 2 <m, S 2 <n�p, and A 2 <m�p, m > n.Step 0 Form q(�) (i.e., equation (3.2)) as follows: Form J+F and J+A, by solving the sparselinear least squares problem Jx = F and the sparse linear least squares problems Jxj =aj ; j = 1; : : : ; p, respectively, using the augmented matrix approach (4.1). These linearleast squares solutions will yield the values of R1 and R2 as well.Step 1 Form the positive de�nite matrix W = ST (JTJ)�1S as follows: Form (JTJ)�1S, bysolving the sparse system of equations (JTJ)xj = sj ; j = 1; : : : ; p, using the augmentedmatrix approach (4.4). Then premultiply (JTJ)�1S by ST to obtain W .Step 2 Perform a Cholesky decomposition of W (i.e., W = LLT ) to obtain L 2 <p�p, a lowertriangular matrix.Step 3 Use UNCMIN [24], an unconstrained minimization software package, to solveminimize�2<p fkL�1q(�) k22 + kn(�) k22g; (3:14)where n(�) = R1 + 12�2R2, or solve (3.14) in closed form if p = 1.Step 4 Substitute the value of the solution to (3.14), ��, and q(��) into the following equationfor d, d = (JTJ)�1SW�1q(��)� J+F � 12J+A�2� : (3:15)The total cost of Algorithm 3.1 is the factorization of the sparse augmented matrix in (4.1), 2p+1solves using this factorization, the unconstrained minimization of a function of p variables, andsome lower-order (O(n)) costs. 9



3.2 Solving the Tensor Model When the Jacobian Is Rank De�cientAn important attribute of tensor methods is that the tensor model may have a well-de�nedsolution even if the Jacobian matrix at the current iterate is singular. A stable solution procedureis given in [8] for dense nonlinear least squares. This section gives a method that is e�cientwhen the Jacobian is large and sparse.If the Jacobian matrix is rank de�cient, we can solve the tensor model by building upon theprocess just described. Speci�cally, we transform the tensor model given in (2.4) as follows. Letd = d̂+ � and �̂ = ST d̂ for a �xed d̂, where � is the new unknown. Substituting this expressionfor d in the tensor model (2.4) yields the following model, which becomes a function of �:M(xc + �) = F (xc) + J(xc)(d̂+ �) + 12AfST (d̂+ �)g2: (3:16)Equation (3.16) is equivalent toM̂(xc + �) = F̂ (xc) + Ĵ(xc)� + 12AfST �g2; (3:17)where D�̂ = diag(�̂), F̂ (xc) = F (xc) + J(xc)d̂+ 12AfST d̂g2, and Ĵ(xc) = J(xc) + AD�̂ST .To solve this model in the case when J(xc) is singular, we try to �nd the value of � thatminimizes kM̂(xc+ �) k2. If rank(J) � n� p, usually Ĵ will have full column rank (a necessaryand su�cient condition for Ĵ to be nonsingular is similar to that for sparse nonlinear equations[7]). Thus, if Ĵ has full rank, we can use Algorithm 3.1 to obtain the value of �, but we use aspecial procedure (described in Section 4.2) to e�ciently solve the linear least squares problemsinvolving Ĵ+. We then obtain the tensor step by adding the value of � to the �xed step d̂. Anappropriate choice of d̂ would be the step computed in the previous iteration. We will use thesingular Gauss-Newton step computed in Section 5 as the step direction for the current iterationin the case when Ĵ is rank de�cient. The entire procedure is given in Algorithm 6.1.4 Solving the Sparse Least Squares ProblemsThe algorithm described in the preceding section requires the solution of large, sparse linearleast squares problems. The method that we use for solving these linear least squares problems(i.e., minimizex2<n kJx � b k2) is based on the augmented system approach �rst proposed byHachtel [20], 2666664 I JJT 0 37777752666664 rx 3777775 = 2666664 b0 3777775 ; (4:1)where I is the m � m identity matrix. The �rst block row of equation (4.1) states that theresidual vector is given by r = b� Jx; (4:2)10



and the second block row requires that JT r = 0 (4:3)be satis�ed. Substituting (4.2) into (4.3) gives the normal equations, thereby showing thatx given by (4.1) solves the linear least squares problem. The system (4.1) is symmetric andinde�nite and can be solved by sparse techniques.One reason that we use (4.1) is the e�ciency that this approach has been shown to have. Du�and Reid [16] compared four methods for the solution for sparse linear least squares problems:the direct formation and solution of normal equations, orthogonal reduction to upper triangularform [19, 18], LU factorization of A [22], and Hachtel's augmented matrix method (4.1). Thecriteria used for comparison were the number of operations for matrix decomposition, storage,and number of operations required for subsequent solutions. Du� and Reid found that in everyinstance the best algorithm is either use of normal equations or Hachtel's augmented matrixmethod. Because of ill conditioning with the use of normal equations however, they recommendthe augmented matrix method.A second reason we use (4.1) is that various research has shown the method to be quite accu-rate for large, sparse linear least squares. Du� and Reid [16] conducted tests on the augmentedmatrix method, avoiding any multiplier bigger in modulus (or norm) than a limit u and makingthis stability requirement override sparsity considerations. With u set to 20 they found essen-tially no growth in the size of the largest matrix element (and on some problems they found nosuch growth with u as high as 105). The conditioning of the augmented system (4.1) was studiedby Bjorck [4]. He considered the slightly generalized system obtained by scaling the augmentedsystem with a scaling factor �. A simple analysis shows that if � is chosen equal to the smallestsingular value of A, the condition number of the augmented system is approximately equal to1.6 times the condition number of A, and is about the same as the condition number of A whenA is ill conditioned. Arioli et al. [2] demonstrated that conditioning can be greatly improvedby a scaling similar to that of Bjorck; they suggested an automatic technique for selecting thebest scaling factor �. Unfortunately, both Bjorck and Arioli et al. use a condition numberestimator to calculate �, which would make a tensor iteration very expensive. We decided touse a heuristic scaling strategy by Cleve Moler [21], which sets the value of � to the maximumelement of the matrix in absolute value divided by 1000.A third reason we use the augmented system approach is that it can be extended to solve thetensor model when the Jacobian matrix is rank de�cient. This extension is discussed in Section6. Given that the matrix of equation (4.1) is symmetric, one would normally expect that thesolution scheme that took advantage of this fact would have much lower storage requirementsfor the factors than would an unsymmetric code. By ignoring the symmetry, however, one canbias the pivot selection so that early pivots are chosen from the last n rows (thereby exploitingthe zeros in the right-hand side of (4.1) in the �rst triangular solve) and later pivots are chosenfrom the last n columns (thereby exploiting the fact that equation (4.1) need be solved for xonly in the second triangular solve). By making this judicious choice of pivots and discardingthe portions of the factors that are not required, Du� and Reid [16] obtained substantial savingsin the number of operations for the triangular solves. Therefore Du� and Reid recommend usingthe unsymmetric factorization when there are multiple right-hand sides.11



Using the collection of problems in [16], we computed the number of operations requiredfor (1) one unsymmetric decomposition that gives a slight bias toward early pivots in late rowsand late pivots in late columns, plus three back solves (which is the number of back solvesrequired by the tensor method when p = 1 and the tensor model has no root, or when p = 2and the tensor model has a root), and (2) one symmetric inde�nite decomposition obtained bythe method of Bunch [9] using 2� 2 pivots, plus three back solves. These computations showedthat the unsymmetric decomposition is approximately 25% more e�cient than the symmetricone. For greater values of p, the unsymmetric decomposition has an even larger advantage overthe symmetric one. Based upon this experiment and the recommendation of Du� and Reid, weuse Hachtel's method with an unsymmetric decomposition in our tensor method.The remaining issue in the case when J is nonsingular is the pivoting strategy; this isdiscussed in Section 4.1. In the case when J is singular, based on Section 3.2 we instead wish tosolve a linear least squares problem involving Ĵ ; this leads to additional issues that are discussedin Section 4.2.4.1 Solving the Least Squares Problems When the Jacobian Has Full RankAs discussed above, we wish to determine an unsymmetric row and column pivoting strategyfor factoring the augmented matrix in (4.1) that reduces the costs of the backsolves needed inAlgorithm 3.1. Note that Algorithm 3.1 involves both terms of the form J+b and terms of theform (JTJ)�1v. Terms of the form J+b will be computed by using (4.1). To compute terms ofthe form (JTJ)�1v, where v 2 <n, we solve the augmented system2666664 I JJT 0 37777752666664 �tz 3777775 = 2666664 0�v 3777775 (4:4)for z. From its two components JT t = v (4:5)and Jz � t = 0; (4:6)(4.4) is equivalent to (JTJ)z = v.From Algorithm 3.1, it is seen that the computations of the form J+b require both thesolution x and the residual r. Thus, the column-pivoting decisions are irrelevant as far as savingcomputations in these backsolves. On the other hand, in solving (4.4) we need to compute z butnot t. Therefore we construct the pivoting strategy to bias the last n pivots to come from thelast n columns in order to save steps in the upper triangular backsolve. For the row-pivotingstrategy, we can bias the selection so that the �rst backsolve can skip the computations involvingeither the n zeroes in the right-hand side of (4.1) or the m zeroes in the right-hand side of (4.4).Since the latter choice results in a larger savings, we bias the �rst m pivots to come from the�rst m rows. 12



We use a sparse variant of Gaussian elimination on the augmented matrix (4.4), using thefollowing Markowitz pivot selection strategy, which is based on a strategy in [16]. The sparsitycost of a nonzero in row i and column j is ricj , where ri is either the number of nonzeros inrow i if i � m or one more if i > m, and cj is either the number of other nonzeros in columnj if j � m or one more if j > m. If this pivot strategy produces the optimal case, namely, the�rst m pivots come from the �rst m rows of the augmented matrix (4.4), and the last n pivotscome from the last n columns, we can omit the �rst m steps in the lower triangular backsolveand disregard the �rst m columns of the lower triangular factor, and can omit the last n stepsin the upper triangular backsolve and disregard the last n rows of the upper triangular factor,in solving (4.4) for z. In many problems, however, this pivot strategy produces a nonoptimalcase, namely, only the �rst m1 < m components of the vector P1 [0 � v]T are zeros, and z1is the position of the �rst z component in the vector P2T [�t z]T . In this case we can omitthe �rst m1 steps in the lower triangular backsolve and disregard the �rst m1 columns of thislower triangular factor, and can omit the last z1� 1 steps in the upper triangular backsolve anddisregard the last z1 � 1 rows of the upper triangular factor, in solving (4.4) for z.4.2 Solving the Least Squares ProblemsWhen the Jacobian Is Rank De�cientWhen the Jacobian is rank de�cient, we need to solve linear least squares problems to computeĴ+F and Ĵ+A, and linear systems of equations to compute (ĴT Ĵ)�1S, where Ĵ = J +AD�̂ST ,J 2 <m�n, A 2 <m�p, D�̂ 2 <p�p, S 2 <n�p, and J is rank de�cient.To solve a least squares problem of the formminimizex2<n k(J + AD�̂ST )x� b k2; (4:7)where x 2 <n and b 2 <m, we �rst write (4.7) as an augmented system of (m+n) equations forthe (m+ n) unknown components of r and x,2666664 I J + AD�̂STJT + SD�̂AT 0 37777752666664 rx 3777775 = 2666664 b0 3777775 : (4:8)(As in (4.1), r 2 <m is the residual of (4.7).) However, since Ĵ = J +AD�̂ST is dense, formingand solving (4.8) would not be e�cient. Instead, if we de�neSTx = y (4:9)and D�̂ATr = z; (4:10)13



the system (4.8) is equivalent to26666666666666664 I J AD�̂ 0JT 0 0 SD�̂AT 0 0 �I0 ST �I 0 377777777777777752666666666666664 rxyz 37777777777777752666666666666664 b000 3777777777777775 : (4:11)This system has 2p additional rows and columns in comparison with (4.8). Now, recall thatthe system (4.11) is constructed only if the augmented system (4.1) is rank de�cient. Thatmeans that we have already factorized the augmented matrix in (4.1) and discovered it to berank de�cient. Therefore, we need to �nish factorizing the remaining rows and columns startingat the point where (4.1) was discovered to be rank de�cient, to obtain the factorization of theaugmented matrix in (4.11). If Ĵ is singular, we calculate the Gauss-Newton step (see Section5), which will be used as the search direction from the current iterate xc for the line searchglobal strategy.Similarly to the full-rank case, we are also able to use the same augmented matrix thatsolves Ĵ+F and Ĵ+A to solve the systems of equations (ĴT Ĵ)�1S. We proceed by solving theaugmented system 2666664 I ĴĴT 0 37777752666664 �tixi 3777775 = 2666664 0�si 3777775 (4:12)for xi 2 <n; i = 1; : : : ; p, where ti 2 <m and si 2 <n = column i of S. If we de�ne STxi = y,and D�̂AT ti, the augmented system (4.12) can be rewritten as26666666666666664 I J AD�̂ 0JT 0 0 SD�̂AT 0 0 �I0 ST �I 0 377777777777777752666666666666664 �tixiyi�zi 37777777777777752666666666666664 0�si00 3777777777777775 (4:13)for xi; i = 1; : : : ; p. This system has the same matrix as (4.11), but a di�erent zero pattern onthe right-hand side. 14



As when J is nonsingular, we choose the pivoting strategy that is optimal for solving (4.13).That is, we wish to bias the �rstm pivots to come from the �rstm rows of the augmented matrix(4.13), and the last n pivots to come from the last n columns. In the best case, this strategyenables us to omit the �rst m steps in the lower triangular backsolve and disregard the �rst mcolumns of the lower triangular factor, as well as omit the last n steps in the upper triangularbacksolve and disregard the last n rows of the upper triangular factor, when computing anexpression of the form (ĴT Ĵ)�1v.5 Solving the Gauss-Newton ModelThis section discusses a stable method for solving the linear least squares problemminimized2<n kJd+ F k2 (5:1)along with the tensor model, where J 2 <m�n is sparse, and F 2 <m.If J has full rank, the solution to the linear least squares problem (5.1) is already availablefrom the computation of J+F from Step 0 of Algorithm 3.1.If the Jacobian matrix is rank de�cient, we use an extension of the method of Peters andWilkinson [22], developed by Bjorck and Du� [5], to �nd some solution d to (5.1). If we let Mdenote the augmented matrix in (4.1), an LU factorization of M using Gaussian eliminationwith both row and column pivoting is equivalent to multiplying a permutation of M from theleft by the product, G, of a sequence of elementary elimination matrices. If we carry out thesame transformations on the right-hand side [�F 0]T , we obtainGP1MP2 = " U0 # ; (5:2)GP1 " �F0 # = " ce # ; (5:3)where P1; P2 are permutation matrices, U is an � � (m + n) upper trapezoidal matrix with� = rank(M) = m+ rank(J), c 2 <�, and e 2 <m+n��.If we look at this in terms of an LU decomposition of M , we haveP1MP2 = LU; (5:4)where L is a unit lower trapezoidal (m+ n)� �, andP1 " �F0 # = Lc+ " 0e # : (5:5)Now let [rs ds]T be any solution of the systemUPT2 " rd # = c: (5:6)15



Then, since " �F0 # �M " rsds # = P1T (P1(" �F0 #�M " rsds #))= P1T (Lc+ " 0e #� Lc)= P1T " 0e #= " e1e2 # ; (5:7)where e1 2 <m and e2 2 <n, we have that ke k2 is the l2 norm of the residual of the augmentedsystem. Also JT rs = �e2, and �rs� e1 = Jds+F is the residual of the original overdeterminedsystem.Thus, if ke k2 < � (� some suitable tolerance), then ds is the solution to (5.1) with a slightlyperturbed right-hand side [�F 0]T , at the cost of a simple forward elimination (5.3) and backsubstitution (5.6). However, if ke k2 is larger, we would like to solve the least squares problem(5.1) using the initial decomposition (5.2) and (5.3). For an arbitrary [r d]T we have thatP1(M " rd #� " �F0 #) = LUP2T " rd #� Lc� " 0e #= Lz � " 0e # ; (5:8)where UP2T " rd # = c+ z: (5:9)Therefore, d is a least squares solution of (5.1) if it satis�es (5.9), where z is the solution ofminimizez2<n kLz � " 0e # k2: (5:10)The least squares problem (5.10) can be solved by using the (m+n+�)�(m+n+�) augmentedmatrix 2666664 0 LTL I 37777752666664 z
 3777775 = 2666664 0e 3777775 ; (5:11)where 
 is the residual of (5.10). We then compute the solution of (5.9) for d.Thus, if ke k2 is larger than �, then d is the solution to (5.1) at the cost of one forward solve(5.3), one back solve (5.6), an LU factorization of the augmented matrix (5.11) followed by oneforward and one backward solve using the resulting factors L̂ and Û , respectively, and a backsolve (5.9). 16



An advantage of this modi�cation of Peters and Wilkinson's method is that equation (5.11)is used only to compute a correction to equation (5.9). Therefore, for problems with smallresiduals, this method should be more stable, since any ill conditioning in L will a�ect only thecorrection z. Also, L is less likely than U to be ill conditioned. Moreover, since(JTJd = �JTF ) => dTJTF = �dTJTJd � 0; (5:12)the solution d to (5.1) is a descent direction unless Jd = 0, which implies that JTF = 0.6 Implementation and Testing of Tensor MethodsIn this section we summarize the overall implementation of tensor methods for solving sparsenonlinear least squares problems. We also describe testing of an algorithm based on this im-plementation compared with an algorithm that is based on the linear Gauss-Newton model butthat is identical otherwise. We present analysis and summary statistics of the test results.6.1 ImplementationThe following algorithm is an implementation of an iteration of our tensor method for sparsenonlinear least squares problems. We have used only one past point (p = 1) in the implementa-tion, since this again turned out to be the most e�cient choice in virtually all cases.Algorithm 6.1 An Iteration of the TensorMethod for Sparse Nonlinear Least SquaresGiven xc and F (xc), let M1 and M2 be the matrices given in (4.1) and (4.11), respectively.Step 0 Calculate J(xc), and decide whether to stop.Step 1 Calculate the second-order term of the tensor model so that the tensor model interpo-lates F (x) at the most recent past point (i.e., p = 1.)Step 2 Form the augmented matrix M1, and factorize it using the MA28 software package[15], employing the Markowitz pivoting strategy oriented toward e�ciently computing anexpression of the form (JTJ)�1v, where v 2 <n (see Section 4.1.)Step 3 If M1 has full rank, use Algorithm 3.1 to solve the tensor model M(xc + d) = F (xc) +F 0(xc)d+ 12AfSTdg2, to compute the tensor step dt. Go to Step 5. ElseStep 3.1 Construct the augmented matrix M2.Step 3.2 Complete the factorization of M2 as follows. Let � denote the rank of M1.Step 3.2.1 Update the lower left 2p� � rectangular submatrix, and the upper right�� 2p rectangular submatrix of M2, using the multipliers stored in the L factorof the LU factorization of M1.Step 3.2.2 Factor the lower right square (m+ n� �+ 2p)� (m+ n� �+ 2p) sub-matrix using the MA28 software package [15].17



Step 3.2.3 Update M2 by combining the LU factorization of the submatrix in Step3.2.2, the updated submatrices in Step 3.2.1, and the LU factorization of M1,into one LU factorization of M2.Step 4 If J is rank de�cient but M2 has full rank, use Algorithm 3.1 to solve the tensor modelM̂(xc + �) = F̂ (xc) + Ĵ(xc)� + 12AfST �g2, where F̂ (xc) = F (xc) + J(xc)d̂ + 12AfST d̂g2,Ĵ(xc) = J(xc)+AD�̂ST , and d̂ is the step computed in the previous iteration, to computethe step �. Then set dt = d̂+ �. (Any values of the form Ĵ+v or (ĴT Ĵ)�1v are computedusing the augmented matrix approaches described in Section 4.2.) ElseStep 4.1 Calculate the singular Gauss-Newton step dn by the Bjorck and Du� method[5] (see Section 5).Step 4.2 Select the next iterate x+ using a standard backtracking line search strategy[14], where dn is the search direction; go to Step 6.Step 5 Select the next iterate x+ using the global framework described in Algorithm 6.2.Step 6 Set xc  x+, J(xc) J(x+), and go to Step 0.Algorithm 6.2 Global Framework for Line Search for Sparse Nonlinear Least SquaresLet xc be the current iterate, dn the Gauss-Newton step, dt the tensor step, g = J(xc)TF (xc)the gradient at xc, and � = 10�4slope = gTdtfc = 12kF (xc) k22xt+ = xc + dtf+ = 12kF (xt+) k22if f+ < fc + � �minfslope; 0g thenreturn x+ = xt+elsecomment. Test if the tensor step is su�ciently descentif gTdt < �10�4jjgjj2jjdtjj2 thenFind an acceptable xt+ in the tensor direction dt,by performing a standard backtracking line search [14]return x+ = xt+elsePerform a standard backtracking line search [14] on dn to obtain xn+return x+ = xn+endifendif 18



6.2 Test ResultsWe have run the sparse tensor and Gauss-Newton codes on versions of the nonlinear least squaresproblems described by Al-Baali and Fletcher [1] and singular modi�cations of these problems.Both of these codes terminate successfully if the relative size of (x+�xc) is less than macheps 23 ,or jjF (x+)jj1 is less than macheps 23 , or the relative size of J(x+)TF (x+) is less than macheps 13 ,and unsuccessfully if the iteration limit is exceeded. If the last global step fails to locate a pointlower than xc in the line search global strategy, the method stops and reports this condition;this may indicate either success or failure. We use the graph coloring algorithm of Coleman andMor�e [12] to compute the sparse �nite di�erence approximation of the Jacobian matrix.The �rst type of test problem is the Signomial problem, de�ned byri(x) = ei + lXk=1 cik n;2Yj=s xjaijk ; i = 1; : : : ; m; (6:1)where Qn;2j=s means j = s; s + 2; s + 4; : : : ; n, and s = mod(i; 2). The parameter valuesare determined by using pseudo-random numbers. The aijk are uniformly distributed randomintegers in [0,3], and with likelihood p (p = min(100�[200n ], 90)) these values are randomly resetto zero. The parameters cik and ei are in [-100,100] and [-10,10], respectively, the initial vectorx0 has elements in [1,2], and the index l = 8 is chosen. The solution of this type of problem isnot known a priori, and indeed di�erent local solutions may exist. The size of the residuals atthe solution is typically large and is determined mainly by the bounds [-10,10] on ei and can bechanged by varying these bounds. We also tested a modi�ed version of the Signomial problemwhere the residual at the solution (1; : : : ; 1) is zero.The next type of test problem is the Exponential problem, de�ned byri(x) = �ei + lXk=1 cikexp(n;10Xj=s aijkxj); i = 1; : : : ; m; (6:2)where Pn;10j=s means j = s; s+ 10; s+ 20; : : : ; n, and s = mod(i; 10). The parameters are againdetermined by using pseudo-random numbers; the aijk are real numbers in [-0.2,0.3], and withlikelihood 0.5 these numbers are reset to zero. The parameters cik are random numbers in [-5,0],and the index l = 5 is chosen. The parameters ei are determined as follows. A random vectorx0 with elements in [-1,0] is generated, andei(x) = �i + lXk=1 cikexp(s;n;10Xj=1 aijkx0j); i = 1; : : : ; m; (6:3)determines ei, where �i is random in [-10,10]. The initial vector x0 is de�ned byx0 = x0 + 0:1(x00� x0); (6:4)where x00 is another random vector with elements in [-1,0]. Again the solution of this type ofproblem is not known a priori. The size of the residuals at the solution is typically large and19



is determined mainly by the bounds [-10,10] on �i. We also tested a modi�ed version of theExponential problem where the residual at the solution (1; : : : ; 1) is zero.The �nal type of test problem is the Trigonometric problem, de�ned by~ri(x) = �ei + n;4Xj=s(aijsinxj + bijcosxj); i = 1; : : : ; m; (6:5)where Pn;4j=s means j = s; s+4; s+8; : : : ; n and s = mod(i; 4), and aij , bij are random integersin [-100,100]. We determine the coe�cients ei from the equations ~ri(x0) = 0, where x0 hasrandom elements in [��; �]. However, the residuals ~ri(x0) are zero at x0; hence, to generate alarge residual problem, we de�ne ri(x) = �di + ~ri(x)2; (6:6)where di is random in [-10,10]. Unlike (6.5), the sum of squares of these residuals is not minimizedby x0, and so the solution is not known in advance. The starting point x0 is also generatedrandomly in [��; �]. The size of the residuals at the solution is typically large and is determinedmainly by the bounds [-10,10] on di. We also tested a modi�ed version of the Trigonometricproblem where the residual at the solution (1; : : : ; 1) is zero.We then created singular test problems as proposed in Schnabel and Frank [23] by modifyingboth the zero residual and the nonzero residual cases of the nonsingular test problems describedabove to the form F̂ (x) = F (x)� F 0(x�)A(ATA)�1AT (x� x�); (6:7)where F (x) is the standard nonsingular test function, x� is its root, and A 2 <m�k has fullcolumn rank with 1 � k � n. Note that F̂ (x) also has a root at x� and rank (F̂ 0(x�)) =n � rank(A). We used (6.7) to create two sets of sparse singular problems, with F̂ 0(x) havingrank n � 1 and n � 2, respectively, by using the matrix A 2 <m�1 and <m�2, respectively, andwhose columns are the unit vectors.All our computations were performed on the Sun SPARC 2 computer of the Computer ScienceDepartment of the University of Colorado at Boulder, using double-precision arithmetic. Mostof these test problems were run with dimensions (m;n) = (300; 100), and (m;n) = (600; 200).For each test problem we used several di�erent starting guesses generated byx̂0 = x0 + const(x0 � x�); (6:8)where const is a real number indicating how far the initial guess is from the solution, and x� isthe solution resulting from running the problem with the initial starting guess x0. We increasedthe iteration limit to 200 and sometimes to 300 when we ran large residual problems. The mainreason is that the convergence rate for such problems is linear at best, and usually it takes manyiterations to converge to the solution. For any given problem, the same iteration limit was usedby both methods.Tables 1 to 6 summarize the performance of the sparse tensor and Gauss-Newton methodson the test problems described above. Each table presents the test results for a nonsingulartest problem and its rank n � 1 and rank n � 2 singular versions. Columns \Better" and20



\Worse" represent the number of times the tensor method was better and worse, respectively,than the Gauss-Newton method by more than one iteration over all the starting points for theproblem under consideration. The \Tie" column represents the number of times the tensor andGauss-Newton methods required within one iteration of each other. For each set of problems,we summarize the comparative costs of the tensor and Gauss-Newton methods using averageratios of three measures: iterations, execution times, and function evaluations. The averageiteration ratio is the total number of iterations required by the tensor method, divided by thetotal number of iterations required by the Gauss-Newton method on these problems. The samemeasure is used for the average execution time and function evaluation ratios. Tables 7 to 9present the average iteration and function evaluation ratios on the sparse nonlinear least squaresproblems described above. All these ratios include only problems that were successfully solvedby both methods.We have excluded from the summary of statistics all cases where the tensor and Gauss-Newton methods converge to a di�erent solution, or to the same solution but not the singularsolution x� if singular problems are considered. The statistics for the \Better," \Worse," and\Tie" columns include the cases where only one of the two methods converges, and exclude thecases where both methods do not converge.The following observations can be made on the basis of Tables 1 to 9. The tensor methodalmost always outperforms the Gauss-Newton method. On this particular set of test problems,the tensor method improvement over the Gauss-Newton method is about the same for rank n,n � 1, and n � 2 problems, in iterations and execution time, and more dramatic in functionevaluations for rank n � 1 problems. Overall, the average improvement of the tensor methodover the Gauss-Newton method is about 31% in iterations, about 24% in execution time, andabout 32% in function evaluations. We comment on the smaller improvement in execution timesthan in function evaluations or iterations below.Of all the test problems, 8 nonsingular problems, 24 rank n� 1 problems, and 23 rank n� 2problems were solved by the tensor method but not by the Gauss-Newton method. On the otherhand, only 1 rank n�1 problem and no rank n or rank n�2 problems were solved by the Gauss-Newton method and not by the tensor method. Most problems solved by the tensor method butnot by the Gauss-Newton method have large residuals at the solution; of the problems solvedby the tensor method but not the Gauss-Newton method, only 1 nonsingular problem, 1 rankn� 1 problem, and 4 rank n � 2 problems have zero residuals at the solution.We observe from Tables 8 and 9 that the average improvement of the tensor method over theGauss-Newton method in execution time is about 9% less than that in iterations for zero-residualproblems, and about 5% less for large residual problems. This is because a tensor iteration re-quires at least 2p more backsolves than a Gauss-Newton iteration (here, p = 1). Empirically, theincreased cost per iteration for zero-residual problems ranges from 1% in problems with expen-sive function evaluation, like the Trigonometric problem, to 23% in problems with inexpensivefunction evaluation, like the Exponential problem. For large residual problems, the increasedcost ranges from 1% in problems with expensive function evaluation to 21% in problems withinexpensive function evaluation. This accounts for the smaller improvements in execution time.A closer examination of the sparse nonlinear least squares test results shows that the aver-age improvements by the tensor method are slightly more for zero-residual problems than forlarge residual problems: about 33% in iterations, 24% in execution times, and 36% in function21



Table 1: Summary for the Signomial Problem with Zero ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 8 0 0 0.63 0.69 0.65n � 1 8 0 0 0.53 0.59 0.54n � 2 8 0 0 0.58 0.63 0.59evaluations for zero residual problems, as opposed to 29% in iterations, 23% in execution times,and 28% in function evaluations for large residual problems. On rank n � 1 problems this isdue in part to the tensor method achieving superlinear convergence on zero residual problems,whereas the Gauss Newton method is linearly convergent at best on these problems.The analysis in [17] shows that tensor methods for nonlinear equations have at least a 3-steporder 1.5 rate of convergence on a class of problems with rank de�ciency one at the solution,whereas Newton's method is linearly convergent with constant 0.5 on the same problems. Theseresults can be extended to tensor and Gauss-Newton methods for nonlinear least squares on zeroresidual problems with rank de�ciency one. To study these theoretical results experimentally,we examined the sequence of ratios jjxk � x�jj=jjxk�1 � x�jj (6:9)produced by the Gauss-Newton and tensor methods on problems with rank(F 0(x�)) = n�1 andwhere the residual at the solution is very small or zero. These ratios for a typical problem aregiven in Table 10. In almost all cases the Gauss-Newton method exhibits local linear convergencewith constant near 0.5. The local convergence rate of the tensor method is faster, with a typical�nal ratio of 0.01. This �nal ratio might be even smaller if analytic Jacobians are used incombination with tighter stopping tolerances.We also examined the sequence of ratios produced by the Gauss-Newton and tensor methodson problems with rank(F 0(x�)) = n � 1 and where the residual at the solution is large. Theseratios for a typical problem are given in Table 11. In almost all these cases the Gauss-Newtonmethod is slowly locally q-linearly convergent. The local convergence rate of the tensor methodis still linear, as expected, but usually with a smaller linear convergence constant than theGauss-Newton method.We ran most of the test problems using one and two past points in the tensor method, andnoticed almost no di�erence in iterations or function evaluations. However, there was an increasein execution time when we used two past points because of the two extra back solves requiredper tensor iteration. Thus, our software package for solving sparse nonlinear least squares usesonly one past point. This algorithmic decision also decreases the storage requirements of thepackage. 22



Table 2: Summary for the Trigonometric Problem with Zero ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 10 0 0 0.52 0.53 0.52n � 1 9 0 0 0.60 0.61 0.60n � 2 6 0 0 0.66 0.68 0.67600 200 n 8 1 0 0.66 0.67 0.68n � 1 9 0 1 0.69 0.71 0.70n � 2 6 1 0 0.81 0.83 0.82Table 3: Summary for the Exponential Problem with Zero ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 19 0 2 0.69 0.88 0.71n � 1 18 0 3 0.73 0.93 0.76n � 2 19 2 0 0.74 0.92 0.76600 200 n 19 0 2 0.77 0.95 0.78n � 1 21 1 0 0.76 0.93 0.77n � 2 21 0 0 0.74 0.89 0.75Table 4: Summary for the Signomial Problem with Large ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 4 0 0 0.70 0.71 0.70n � 1 4 0 0 0.72 0.73 0.72n � 2 4 0 0 0.72 0.73 0.7223



Table 5: Summary for the Trigonometric Problem with Large ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 17 1 0 0.75 0.76 0.75n � 1 9 2 1 0.74 0.76 0.74n � 2 6 0 0 - - -600 200 n 17 1 0 0.73 0.74 0.73n � 1 15 0 0 - - -n � 2 12 0 0 0.50 0.50 0.49Table 6: Summary for the Exponential Problem with Zero ResidualRank Tensor Average Ratio{Tensor/Standardm n F 0(x�) Better Worse Tie Iteration Time Feval300 100 n 9 0 0 0.70 0.80 0.70n � 1 9 0 0 0.71 0.82 0.72n � 2 10 0 0 0.70 0.80 0.70600 200 n 7 0 0 0.76 0.85 0.77n � 1 6 1 0 0.76 0.85 0.77n � 2 5 1 0 0.89 1.00 0.90Table 7: Average Ratios of Tensor Method versus Gauss-NewtonMethod on All Sparse NonlinearLeast Squares Rank TensorF 0(x�) Iterations Execution Time Function Evaluationsn 0.69 0.75 0.70n � 1 0.69 0.77 0.63n � 2 0.70 0.77 0.71Table 8: Average Ratios of Tensor Method versus Gauss-Newton Method on Sparse NonlinearLeast Squares with Zero ResidualsRank TensorF 0(x�) Iterations Execution Time Function Evaluationsn 0.65 0.74 0.66n � 1 0.66 0.75 0.55n � 2 0.70 0.79 0.7124



Table 9: Average Ratio of the Tensor Method versus the Gauss-Newton Method on SparseNonlinear Least Squares with Large ResidualsRank TensorF 0(x�) Iterations Execution Time Function Evaluationsn 0.72 0.77 0.73n � 1 0.73 0.79 0.73n � 2 0.70 0.75 0.707 Summary and Future WorkWe have extended tensor methods to large, sparse nonlinear least squares problems. Thesemethods form the tensor model in the same way as in the tensor methods developed for small tomedium-sized dense nonlinear least squares [6, 8], with the exception that only one past pointis used in the interpolation process. The tensor step, however, is computed by an entirely newapproach that preserves the sparsity of the Jacobian matrix and allows the tensor model to besolved e�ciently and stably when the Jacobian matrix is singular. This new solution approachis the main contribution of this paper and is essential because the approach for small denseproblems used in [6, 8] destroys the sparsity of the Jacobian matrix as a result of orthogonaltransformations of the variable and function spaces.The numerical test results show that the tensor method is much more e�cient than theGauss-Newton method on both nonsingular and singular test problems, in terms of iterations,function evaluations, and execution times. The tensor method has also proved to be signi�cantlymore robust than the Gauss-Newton method in terms of the number of problems solved. Theconsistency of these improvements indicates that the tensor method is preferable to the Gauss-Newton method for solving sparse nonlinear least squares problems.We currently are implementing trust region tensor methods for large, sparse nonlinear leastsquares. The testing of these methods and their comparison with the line search tensor methodsdescribed in this paper will be reported in forthcoming paper. Finally, we are implementingthe algorithms discussed in this paper in a software package, and we plan to make it generallyavailable in the near future.References[1] M. Al-Baali and R. Fletcher. Variational methods for nonlinear least squares. Technicalreport NA/71, Department of Mathematical Sciences, University of Dundee, 1983.[2] M. Arioli, I. S. Du�, and P. P. M. Rijk. On the augmented system approach to sparseleast-squares problems. Numer. Math., 55:667{684, 1989.[3] B. M. Averick, J. J. Mor�e, C. H. Bischof, A. Carle, and A. Griewank. Computing largesparse Jacobian matrices using automatic di�erentiation. SIAM J. Sci. Statist. Comput.,15:285{294, 1994. 25
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